TD 11 : Réécriture

Ioana Pasca, Marc Lasson

Exercice 1. Relations abstraites

Soit X un ensemble quelconque, et notons $\mathcal{R} = \mathcal{P}(X^2)$ l'ensemble des relations binaires sur X (aussi appelées réductions). On notera par \to les éléments de \mathcal{R} et par $x \to y$ l'appartenance du couple (x,y) à la relation \to . La composée de deux relations sera notée par la juxtaposition : $\to_1 \to_2 = \{(x,z) \mid \exists y, x \to_1 y \to_2 z\}.$

Soit P un prédicat sur les relations binaires $(P \in \mathcal{P}(\mathcal{R}))$.

1. Qu'est-ce que la clôture d'une relation R vis à vis de P? Que doit satisfaire P?

Soit \rightarrow une relation; on note:

- \leftarrow sa relation converse $(\leftarrow = \{(x, y) \mid y \rightarrow x\});$
- \rightarrow sa clôture réflexive;
- \rightarrow^+ sa clôture transitive;
- \rightarrow^* sa clôture réflexive et transitive;
- \leftrightarrow sa clôture symétrique;
- \leftrightarrow^* sa clôture réflexive, symétrique et transitive.

La réduction \rightarrow est dite :

- n exthérienne s'il n'existe pas de suite $(x_n)_{n \in \mathbb{N}}$ telle que pour tout $i, x_i \to x_{i+1}$;
- acyclique s'il n'existe pas d'élément x tel que $x \to^+ x$;
- finitaire (ou à branchement fini) si pour tout élément x l'ensemble $\{y \mid x \to y\}$ est fini;
- globalement finie si pour tout élément x l'ensemble $\{y \mid x \to^+ y\}$ est fini;
- bornée si pour tout x il existe $n_x \in \mathbb{N}$ tel qu'il n'existe pas de y tel que $x \to^{n_x} y$.
 - **2.** Montrer que \rightarrow^+ est nœthérienne ssi \rightarrow l'est aussi.
 - **3.** Dans les questions qui suivent, prouver les affirmations correctes ou donner un contreexemple dans le cas contraire.
 - a) Une relation bornée est-elle nœthérienne?
 - b) Une relation globalement finie est-elle bornée? Est-elle nœthérienne?
 - c) On suppose que \rightarrow et \rightarrow^* sont finitaires. \rightarrow est-elle nœthérienne?
 - d) On suppose \rightarrow acyclique et \rightarrow^* finitaire. \rightarrow est-elle nœthérienne?

Exercice 2. Ordres

1. Ordre lexicographique.

Soit A et B deux ensembles, \geq_A une relation d'ordre sur A, \geq_B une relation d'ordre sur B, $>_A$ l'ordre strict associé à \geq_A et $>_B$ l'ordre strict associé à \geq_B .

a) Rappeler la définition de l'ordre lexicographique $>_{A\times B}$ associé à $>_A$ et $>_B$.

b) On donne la définition suivante :

$$(x,y) \geqslant_{A \times B} (x',y') :\Leftrightarrow (x >_A x') \lor (x = x' \land y \geqslant_B y')$$

Vérifier que $\geq_{A\times B}$ est la clôture reflexive de $>_{A\times B}$ et qu'il s'agit d'une relation d'ordre sur $A\times B$.

- 2. Ordre multi-ensemble.
 - a) Soit (X, >), un ensemble ordonné, rappeler la définition de $>_{mul}$ extension de > sur les multiensembles à support fini d'éléments de X.
 - b) Donner une définition plus simple quand > est total.
- **3.** Plongement d'un ordre dans $(\mathbb{N}, >)$.

On rappelle le lemme suivant :

Une réduction finitaire termine ssi il existe un plongement monotone dans $(\mathbb{N}, >)$.

a) Montrer que la restriction aux réductions finitaires est necessaire en analysant l'exemple suivant :

$$\begin{cases} \sup \mathbb{N} \times \mathbb{N} \\ (i+1,j) \to (i,k) \\ (i,j+1) \to (i,j) \end{cases}$$

b) Que pensez vous de l'exemple suivant?

$$\begin{cases} \sup \mathbb{N} \times \mathbb{N} \\ (i, j+1) \to (i, j) \\ (i+1, j) \to (i, j) \end{cases}$$

Exercice 3.

1. Montrer la terminaison sur $\mathbb{N} \times \mathbb{N}$ de :

$$\begin{cases} (i+1,j) \to (i,i) \\ (i,j+1)) \to (i,j) \end{cases}$$

2. Montrer que l'evaluation de la fonction d'Ackermann termine pour tout $m, n \in \mathbb{N}$.

$$\begin{cases} ack(0,n) \rightarrow n+1 \\ ack(m+1,0) \rightarrow ack(m,1)) \\ ack(m+1,n+1) \rightarrow ack(m,ack(m+1,n)) \end{cases}$$

Exercice 4.

On considere $\mathcal{T}(\Sigma, X)$ l'ensemble des termes sur la signature Σ à variables dans X. On rapelle que une relation > est un ordre de réécriture pour $\mathcal{T}(\Sigma, X)$ si :

- c'est un ordre (transitive, irreflexive),
- elle est $compatible : si \ u > v$ alors

$$f(t_1,\ldots,t_{i-1},u,t_{i+1},\ldots,t_n) > f(t_1,\ldots,t_{i-1},v,t_{i+1},\ldots,t_n)$$

- elle est close par substitution : si u > v alors pour toute substitution σ , $u\sigma > v\sigma$.

Un ordre de réduction est un ordre de réécriture nœthérien.

On rappelle le lemme du cours : Un système de réécriture R termine si et seulement si il existe un ordre de réduction > tel que pour toute règle $l \rightarrow r$ de R, on a l > r.

Pour un terme s et une variable x on note |s| la taille du terme et $|s|_x$ le nombre d'apparitions de x dans s.

1. Montrez que l'ordre strict > sur $\mathcal{T}(\Sigma, X)$ défini par

$$s > t$$
 ssi $|s| > |t|$ et $\forall x \in X, |s|_x \geqslant |t|_x$

est un ordre de reduction.

2. Justifier ou infirmer la terminaison des systèmes de réécriture suivants :

(a)
$$f(f(x,x),y) \to f(y,y)$$

(b)
$$\begin{cases} p(s(i), j) \to p(i, j) \\ p(i, s(j)) \to p(i, j) \end{cases}$$