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Parametric polymorphism

let rec £ = function
| 0 —>1
| hd::tl -> 2 * (f tl)

val f : Va, o list — int

Parametricity polymorphism: parametric types behave uniformly
over abstracted types.

If k£ f:Va,alist — int and |/| = |/| then f 1=
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Parametricity relations

@ Tool introduced by Reynolds to study polymorphism.
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Parametricity relations

@ Tool introduced by Reynolds to study polymorphism.

In System F

We define a relation s ~, t by induction on 7
t ~oor b = VX1 X0.X1 ~o X2 —> (t1 X1) ~r (tz X2)

t] ~vo 2 = Ra t o
t1 ~va,r b =VRa.tL ~r b

Two related functions map related inputs to related outputs.

3/41 Realizability and parametricity in pure type systems Marc Lasson



Parametricity relations

@ Tool introduced by Reynolds to study polymorphism.

In System F

We define a relation s ~, t by induction on 7
t ~oor b = VX1 X0.X1 ~o X2 —> (t1 Xl) ~r (tz X2)

t] ~vo 2 = Ra t o
t1 ~va,r b =VRa.tL ~r b

Two related functions map related inputs to related outputs.

Abstraction theorem

If = t: 7 then we can prove that t ~ t.
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Example

f ~“Yo.ao—a 8

VR.¥xy.xRy — (f x)R(g y)
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Example

f ~“Yo.ao—a 8

VR.¥xy.xRy — (f x)R(g y)

VaB.a — [ — «

f ~Vaob.o—B—a 8

VR1Rx . Vx1y1.x1Riy1 = Vxays.xoRoyo — (f x1 x2)R1(g y1 y2)
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Parametricity — Abstraction theorem

Abstraction theorem

If =t : 7 then we can prove that t ~ t.

Application : Theorems for free!
@ Let t be such that
Ft:Voaa—«
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Parametricity — Abstraction theorem

Abstraction theorem

If =t : 7 then we can prove that t ~ t.

Application : Theorems for free!
@ Let t be such that
Ft:Voaa—«

@ By the abstraction theorem, you obtain

t ~va.asat
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Parametricity — Abstraction theorem

Abstraction theorem

If =t : 7 then we can prove that t ~ t.

Application : Theorems for free!
@ Let t be such that
Ft:Voaa—«

@ By the abstraction theorem, you obtain

t ~va.asa t
@ By unfolding the definition of ~v4.a—a:

VR*® x:a y:B.xRy — (tax)R(tsy)
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Parametricity — Abstraction theorem

Abstraction theorem

If =t : 7 then we can prove that t ~ t.

Application : Theorems for free!
@ Let t be such that
Ft:Voaa—«

@ By the abstraction theorem, you obtain

t ~va.a—sa t
@ By unfolding the definition of ~v4.q—a.
VR*® x:a y:B.xRy — (tax)R(tsy)
o Forall g:a— f, if you take to be Rxy < (gx) =y, you have
Vg:a— BVx:a.g(tex)=tz(gx)
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Parametricity — Abstraction theorem

Abstraction theorem

If =t : 7 then we can prove that t ~ t.

Application : Theorems for free!
@ Let t be such that
Ft:Voaa—«

@ By the abstraction theorem, you obtain

t ~va.asat

@ By unfolding the definition of ~v4.q—a.
VR*® x:a y:B.xRy — (tax)R(tsy)
o Forall g:a— f, if you take to be Rxy < (gx) =y, you have

Vg:a— BVx:a.g(tex)=tz(gx)
@ By extensionality, it's equivalent to

Vg:a— pB.goty=tgog
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Parametricity — Abstraction theorem

Abstraction theorem

If =t : 7 then we can prove that t ~ t.

Application : Theorems for free!
@ Let t be such that
Ft:Voaa—«

@ By the abstraction theorem, you obtain

t ~va.asat

@ By unfolding the definition of ~v4.q—a.
VR*® x:a y:B.xRy — (tax)R(tsy)
o Forall g:a— f, if you take to be Rxy < (gx) =y, you have

Vg:a— BVx:a.g(tex)=tz(gx)
@ By extensionality, it's equivalent to
Vg:a— pB.goty=tgog
@ Which is equivalent to the fact that t is the identity function
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Realizability

Specifying programs with formulas
or
giving computational content to formula.
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Realizability

Specifying programs with formulas
or
giving computational content to formula.

We define “p realizes a formula F" (p I F) by induction on F.

Key case of the definition

thFP— Q=VxxIlFP— (tx)IFQ
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Realizability

Slogan

Specifying programs with formulas
or
giving computational content to formula.

We define “p realizes a formula F" (p I F) by induction on F.

Key case of the definition

thFP— Q=VxxIlFP— (tx)IFQ

Adequacy theorem

If there exists a proof m of P, then there exists a program p, and a
proof 7’ of p, IF P.
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Realizability — Applications

@ Proving that axioms (e.g. excluded middle) are not derivable
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Realizability — Applications

@ Proving that axioms (e.g. excluded middle) are not derivable

@ Studying programs extracted from proofs:
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Realizability — Applications

@ Proving that axioms (e.g. excluded middle) are not derivable

@ Studying programs extracted from proofs:

Existence property

If ¥x3y, ©(x,y) is a theorem, then there exists a program f such
that Vx, o(x, f(x)).
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Realizability — Applications

@ Proving that axioms (e.g. excluded middle) are not derivable

@ Studying programs extracted from proofs:

Existence property

If ¥x3y, ©(x,y) is a theorem, then there exists a program f such
that Vx, o(x, f(x)).

Representation theorem

Functions definable in system F are exactly those provably total in
second-order arithmetic.
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Pure type systems — Generalities

A family of A-calculi where types and terms are unified

Provide a framework for studying dependent types

Contains many famous type-systems:

o simply typed A-calculus,
o Girard and Reynolds polymorphic A-calculus (system F),
o Huet-Coquand’s Calculus Of Constructions ...

@ It even contains inconsistent calculus (Type : Type)

A PTS P is defined by a specification (S, .4, R) where

e S is a set of sorts,
o AC S xS a set of axioms,
o RCS x8 xS a set of rules.

Typing judgement ' =p A : B of the PTS P = (S, A4, R).
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Pure type systems — Terms and typing rules

IS

AB = s|x|(AB) | A&x:AB | Vx:AB (withseS)
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Pure type systems — Terms and typing rules

IS

AB = s|x|(AB) | A&x:AB | Vx:AB (withseS)

A — B is a notation for Vx : A.B with x ¢ B
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Pure type systems — Terms and typing rules

IS

AB = s|x|(AB) | A&x:AB | V¥x:AB (withseS)

A — B is a notation for Vx : A.B with x ¢ B

AXIOM m (51, 52) cA

Nx:AFC:B N-(vx:AB):s
M= (Ax:AC): (Vx: AB)

ABSTRACTION

Mr=A:s Nx:AFB:s
MN=(vx:AB):s3

ProbucT (51,52,53) ER
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Pure type systems — Terms and typing rules

IS

AB = s|x|(AB) | A&x:AB | V¥x:AB (withseS)

A — B is a notation for Vx : A.B with x ¢ B

AXIOM m (51, 52) cA

Nx:AFC:B N-(vx:AB):s
M= (Ax:AC): (Vx: AB)

ABSTRACTION

Mr=A:s Nx:AFB:s
MN=(vx:AB):s3

ProDUCT (s1,5,5) €R

+ APPLICATION + START + WEAKENING

9 /41 Realizability and parametricity in pure type systems Marc Lasson



System F

The PTS F has the following specification
Sf = {x 0} Ar ={(x0)} RE = {(%,%,%), (0, %, %)}
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System F

The PTS F has the following specification
Sf = {x 0} Ar ={(x0)} RE = {(%,%,%), (0, %, %)}

Only two kinds of product :
o Arrow type (o — 7)1 (%, %, %)
e Type quantification (Vo 7): (O, %, %)

F=t:7:%
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System F

The PTS F has the following specification

Sf = {x 0} Ar ={(x0)} RE = {(%,%,%), (0, %, %)}
Only two kinds of product :

o Arrow type (o — 7)1 (%, %, %)

e Type quantification (Vo 7): (O, %, %)

F=t:7:%
No:% MNx:ob71:%
M=Vx:o71:% (%, %) € Rp

@ We can provethat TF7:xand Tk x:0: % then x & 7.
Therefore Vx : 0.7 can always be written o — 7.
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System F

The PTS F has the following specification
Sf = {x 0} Ar ={(x0)} RE = {(%,%,%), (0, %, %)}

Only two kinds of product :
o Arrow type (o — 7)1 (%, %, %)
e Type quantification (Vo 7): (O, %, %)

F=t:7:%

Mo:%x I Erox
lN-oc—7:%

(%, %,x) € RE

@ We can provethat TF7:xand Tk x:0: % then x & 7.
Therefore Vx : 0.7 can always be written o — 7.
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System F

The PTS F has the following specification
Sf = {x 0} Ar ={(x0)} RE = {(%,%,%), (0, %, %)}

Only two kinds of product :
o Arrow type (o — 7)1 (%, %, %)
e Type quantification (Vo 7): (O, %, %)

F=t:7:%

Mo:%x I Erox
lN-oc—7:%

(%, %,x) € RE

@ We can provethat TF7:xand Tk x:0: % then x & 7.
Therefore Vx : 0.7 can always be written o — 7.

@ We can also prove that inhabitants of x are either :
o, 0 — 7 or Vo : %.T.
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System F — Examples

o Nat=Va: (o — a) = (a = «a)
0 0= ANa:*)(f:a—a)(x:a)x
@ Succ = A(n: Nat)(a: *)(f : @ = a)(x : a).f (nafx)
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System F — Examples

o Nat=Va: (o — a) = (a = «a)
0 0= ANa:*)(f:a—a)(x:a)x
@ Succ = A(n: Nat)(a: *)(f : @ = a)(x : a).f (nafx)

o F Nat: %
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System F — Examples

o Nat=Va: (o — a) = (a = «a)
0 0= ANa:*)(f:a—a)(x:a)x
@ Succ = A(n: Nat)(a: *)(f : @ = a)(x : a).f (nafx)

o F Nat: «
@ 0 : Nat
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System F — Examples

o Nat=Va: (o — a) = (a = «a)
0 0= ANa:*)(f:a—a)(x:a)x
@ Succ = A(n: Nat)(a: *)(f : @ = a)(x : a).f (nafx)

F Nat : %
F0: Nat
F Succ : Nat — Nat
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9 Building the logic
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From P to P? — From realizers to logic
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From P to P? — From realizers to logic
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From P to P? — Definitions

Given a PTS P = (S, A, R), we define P? = (52, A%, R?) by

S? = SU{]Js] |seS8}

A2 = AU{([s1], [s2]) | (s1,%) € A}

R? = RU{([s1], [s2], [s3]), (s1.[s3].[s3]) | (s1,%,83) € R}
U{ (s, [s2].[s2]) | (s1,:2) € A}
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From P to P? — Definitions

Given a PTS P = (S, A, R), we define P? = (52, A%, R?) by

§* = SU{ls] |seS}
A = AU{([s1], [s2]) | (s1,%) € A}
R?* = RU{([s], [s2], [s3]), (s1.[s3].]s31) | (1,52, 83) € R}

U { (s1, [s2],[s2]) | (s1,%2) € A}

@ For each sort s we add a copy [s],

@ For each axiom (s1,s;) we add the axiom ([s1], [s2]).
@ Beside the rules, we allow three new quantifications :
@ We lift constructs of realizer at the level of the logic,
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From P to P? — Definitions

Given a PTS P = (S, A, R), we define P? = (52, A%, R?) by

S§? = U{[s] | seS}

A = AU{([s1], [s2]) | (s1,%) € A}
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@ For each axiom (s1,s;) we add the axiom ([s1], [s2]).
@ Beside the rules, we allow three new quantifications :

@ We lift constructs of realizer at the level of the logic,
@ We allow quantification over programs,
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From P to P? — Definitions

Given a PTS P = (S, A, R), we define P? = (52, A%, R?) by

S§? = U{[s] | seS}

A2 = AU{([s1], [s2]) | (s1,%) € A}

R? = RU{([s1], [s2], [s3]), (s1.[s3].[s3]) | (s1,%2,83) € R}
U { (s, [s2].[s2]) | (s1,52) € A}

@ For each sort s we add a copy [s],

@ For each axiom (s1,s2) we add the axiom ([s1], [s2])-
@ Beside the rules, we allow three new quantifications :

@ We lift constructs of realizer at the level of the logic,
@ We allow quantification over programs,
© We allow the formation of predicates.
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A bit of vocabulary
@ a type inhabits an original sort s

M-A:s

@ a formula inhabits a lifted sort [s]

Nr-=A:[s]
@ a program inhabits a type

[FA:B:s

@ a proof inhabits a formula

r-A:B: |—5~| First level

Second level

@ types & programs are first-level terms

@ formulas & proofs are second-level terms
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Second-order logic F?
The PTS F2 has the following specification:

= { x5 L [T, 0] }

AR = A (.00, ([], 1)) }

= {0 Oorn), (Foe ) (T ], 1), (1031, T T+1)
Cos [T TEI)s G [l T D), (83, T 1+T) 2

The logic F? is a second-order logic with higher-order typed
individuals (FA2 with higher-order individuals)
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Second-order logic F?
The PTS F2 has the following specification:

SI% = { ) [*—‘, ﬂj—‘ }
Y (], [) }
RE - |

: (1, T, T, (100, [, ¢])
Cos [T TEI)s G [l T D), (83, T 1+T) 2

The logic F? is a second-order logic with higher-order typed
individuals (FA2 with higher-order individuals)

@ [x| is the sort of formulas (like Prop in Coq).
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Second-order logic F?
The PTS F2 has the following specification:

SI% = { ) [*—‘, ﬂj—‘ }
Y (], [) }
RE - |

, (T, T T D), (100, T, T41)
(e, [0, T8, G 1L Tx1), (8, T, T1) }-
The logic F? is a second-order logic with higher-order typed
individuals (FA2 with higher-order individuals)

@ [x| is the sort of formulas (like Prop in Coq).
o ([*],[*],[*]) allows to build implication P — Q.
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Second-order logic F?
The PTS F2 has the following specification:

SI% = { ) [*—‘, ﬂj—‘ }
Y (], [) }
RE - |

, (T, T T D), (100, T, T41)
(e, [0, T8, G 1L Tx1), (8, T, T1) }-
The logic F? is a second-order logic with higher-order typed
individuals (FA2 with higher-order individuals)

[x] is the sort of formulas (like Prop in Coq).
([*], [*], [*]) allows to build implication P — Q.

°
°
@ (%, [*]|,[*]) allows to quantify over programs Vx : 7.P
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Second-order logic F?
The PTS F2 has the following specification:

SI% = { ) [*—‘, ﬂj—‘ }
Y (], [) }
RE - |

: (1, T, T, (100, [, ¢])
Cos [T TEI)s G [l T D), (83, T 1+T) 2

The logic F? is a second-order logic with higher-order typed
individuals (FA2 with higher-order individuals)

[x] is the sort of formulas (like Prop in Coq).

°

o ([*],[*],[*]) allows to build implication P — Q.

@ (*,[*],[*]) allows to quantify over programs Vx : 7.P
o (I, [%], [+]) allows to quantify over types V. P
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Second-order logic F?
The PTS F2 has the following specification:
sz =

{ 0,41, [0 )
2 = (7], [01) }
R = {

(), (7, T, T, (100, T, 1)
(e TEI1, 11D, G [T, [1), (6, [T T1) }-
The logic F? is a second-order logic with higher-order typed
individuals (FA2 with higher-order individuals).

[x] is the sort of formulas (like Prop in Coq).

([*], [*], [*]) allows to build implication P — Q.

(%, [*], [*]) allows to quantify over programs Vx : 7.P.
(3, [%1, [*]) allows to quantify over types Va.P.

(%, [(1], [CT]) is used to build signatures of predicates.
They are all of the form 71 — -+ — 7, — [%].
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Second-order logic F?
The PTS F2 has the following specification:

SE— = { ) 7(*-‘7ﬂ:]-‘ }
Re = { : s (T, T T+1), (T8, T+, [1)

Cos [T TEI)s G [l T D), (83, T 1+T) 2

The logic F? is a second-order logic with higher-order typed
individuals (FA2 with higher-order individuals).

[x] is the sort of formulas (like Prop in Coq).

([*], [*], [+]) allows to build implication P — Q.

(%, [x], [+]) allows to quantify over programs Vx : 7.P.
(3, [%1, [*]) allows to quantify over types Va.P.

°
°
°
o (0, [+],
o (%, [[J],[J]) is used to build signatures of predicates.
They are all of the form 71 — -+ — 7, — [%].

1, [*

° 1, [*]) allows to quantify over predicates

(1o
VX 1= = 1 = [*].P.
16 / 41
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Second-order logic F? — A stratified presentation

@ We can prove that F? is equivalent to this presentation:

programs:

t,t1,tp = X | Ax:1.t | Aaer | (B0 t2) | (t7)
types:

T,0 = e | o =71 | Va.r
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Second-order logic F? — A stratified presentation

@ We can prove that F? is equivalent to this presentation:

programs:

t,t1,tp = X | Ax:1.t | Aaer | (B0 t2) | (t7)
types:

T,0 = e | o =71 | Va.r
formulas:

P,Q = Xti..tn | P— Q| Va.P |Vx:T.P

| VX:1 —..— 7, — Prop.P
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Second-order logic F? — A stratified presentation

@ We can prove that F? is equivalent to this presentation:

programs:

t,ty,tp = X | M7t | At | (1 t2) | (t7)
types:

T,0 = e | o =71 | Va.r
formulas:

P,Q = Xti..tn | P— Q| Va.P |Vx:T.P

| VX:1 —..— 7, — Prop.P

@ + a proof system
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Second-order logic F? — A stratified presentation

@ We can prove that F? is equivalent to this presentation:

programs:

t,ty,tp = X | M7t | At | (1 t2) | (t7)
types:

T,0 = e | o =71 | Va.r
formulas:

P,Q = Xti..tn | P— Q| Va.P |Vx:T.P

| VX:1 —..— 7, — Prop.P

@ + a proof system
@ In the PTS presentation, proofs are represented by terms
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Second-order logic: F? — Examples

Here are some examples in F2.

o Truth: T=VX:[x].X = X
and is proved by AX : [x](h: X).h
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Second-order logic: F? — Examples

Here are some examples in F2.

o Truth: T=VX:[x].X = X
and is proved by AX : [x](h: X).h
o Leibniz equality: x =, y =VX :7 = [¥]. Xx = Xy
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Second-order logic: F? — Examples

Here are some examples in F2.
o Truth: T=VX:[x].X = X
and is proved by AX : [x](h: X).h
o Leibniz equality: x =, y =VX :7 = [¥]. Xx = Xy

o V(a:*)(x:a).x =4 x is proved by
Ma:*)(x:a)(X :a— [x])(h: Xx).h
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Second-order logic: F? — Examples

Here are some examples in F2.
o Truth: T=VX:[x].X = X
and is proved by AX : [x](h: X).h
o Leibniz equality: x =, y =VX :7 = [¥]. Xx = Xy

o V(a:*)(x:a).x =4 x is proved by
Ma:*)(x:a)(X :a— [x])(h: Xx).h

@ The induction principle over Nat:

N = Ax : Nat.vX : Nat — [*].(Vy : Nat. Xy — X (Succ y)) = X0 — X x
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Lifting and projection

[-] embeds the first level toward its copy.

Va:xa—a] = ¥VX:[¥].X—=X
[Nat] VX [x]. (X = X)=> X=X
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Lifting and projection

Projection

|-] collapses the second level toward the first level.

</’_~"'\
Projection

-]
e

S

[t = | = |[VX 7= [*¥].Xt1 = Xt =Va:rxa—

[Nt] = |[VX:Nat— [x].(Vy:Nat.Xy — X (Succy)) = X0 — Xt]
= Vo.(o— a) > a— a=Nat
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Lifting and projection — Lemmas
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Lifting and projection — Lemmas

Lifting preserves typing

FrFA:B:s= [k [A]:[B]:[s]
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Lifting and projection — Lemmas

Lifting preserves typing

FrFA:B:s= [k [A]:[B]:[s]

Lifting preserves [-reduction

A—)ﬁB = |-A] —3 (B-|

20 / 41 Realizability and parametricity in pure type systems Marc Lasson



Lifting and projection — Lemmas

Lifting preserves typing

FrFA:B:s= [k [A]:[B]:[s]

Lifting preserves [-reduction

A—)ﬁB = |-A~| —3 (B-|

Projection preserves typing

FrNFA:B:[s|= |k |A]:|B]:s

20 / 41 Realizability and parametricity in pure type systems Marc Lasson



Lifting and projection — Lemmas

Lifting preserves typing

FrFA:B:s= [k [A]:[B]:[s]

Lifting preserves [-reduction

A—)ﬁB = |-A~| —3 (B-|

Projection preserves typing

Fr'EFA:B:[s|=|[T|F|A]:|B]:s

Projection preserves or removes [-reduction
If A— 3B, then either |[A|—3|B] or |[A| = |B].
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Lifting and projection — Lemmas

Lifting preserves typing

FrFA:B:s= [k [A]:[B]:[s]

Lifting preserves [-reduction

A—)ﬁB = |-A~| —3 (B-|

Projection preserves typing

Fr'EFA:B:[s|=|[T|F|A]:|B]:s

Projection preserves or removes [-reduction
If A— 3B, then either |[A|—3|B] or |[A| = |B].

Projection is the left inverse of lifting
L[AT] = A
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Strong normalization

Theorem (Normalization)

If P is strongly normalizing, so is P2.
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Strong normalization

Theorem (Normalization)

If P is strongly normalizing, so is P2.

Proof sketch.

If a term A is typable in P? and not normalizable, then :
@ one of the first-level subterms of A is not normalizable, or

o the first-level term |A] is not normalizable.
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© Parametricity and realizability in PTS's
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Parametricity and realizability in PTS's

In the following sections,

@ We are going to define a parametricity relation :
(A, B) € [C] (we no longer use the notation A ~¢ B)

@ and a realizability relation : AlF B.
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Parametricity and realizability in PTS's

In the following sections,

@ We are going to define a parametricity relation :
(A, B) € [C] (we no longer use the notation A ~¢ B)

@ and a realizability relation : AlF B.

Formula Formula
——f
(- - )el -1 s
T 1 T T T
Program/Program/ Type Program/Formula
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Parametricity and realizability in PTS's

In the following sections,

@ We are going to define a parametricity relation :
(A, B) € [C] (we no longer use the notation A ~¢ B)

@ and a realizability relation : AlF B.

Formula Formula
——f
(- - )el -1 s
T 1 T T T
Program/Program/ Type Program/Formula
Type/ Type/Sort Type/ Lifted Sort
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Parametricity in PTS's

o We define at the same time :
o a ternary notation (-,) € []
o a unary notation [-]
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Parametricity in PTS's

@ We define at the same time :

e a ternary notation (+,-) € []
e a unary notation [-]

o We want to satisfy the abstraction theorem:
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Parametricity in PTS's

@ We define at the same time :
o a ternary notation (-,) € []
o a unary notation [-]

o We want to satisfy the abstraction theorem:

Theorem (abstraction)
IfTHA: B:s, then

[ F[A - (AAelBl - [s]
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Parametricity in PTS’s — Products, sorts and variables

(A1, Az) € [Vx: B.C] =
V(x1 : B)(x2 : B).(x1,%) € [B] = (A1 x1, A2 x2) € [C]
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Parametricity in PTS’s — Products, sorts and variables

(A1, Az) € [Vx: B. C]] =
V(xa : B)(xe : B)(xg : (x1, %) € [B])-(Arx1, A2 xe) € [C]
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Parametricity in PTS’s — Products, sorts and variables
(A1, Az) € [Vx : B. C]] =
B)

V(x1: B)(x2 : B)(xr @ (x1,%2) € [B]).(A1x1, A2 x2) € [C]

(Al,AQ) (S [[X]] = (XR A1 A2)
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Parametricity in PTS’s — Products, sorts and variables

(A1, Az) € [Vx: B. C]] =
V(xa : B)(xe : B)(xg : (x1, %) € [B])-(Arx1, A2 xe) € [C]

(Al,Az) (S [[X]] = (XR A1 A2)

(Al,Az) € [[S]] =A = A — (S—|
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Parametricity in PTS's — Example

(ti, 1) € [Va:xa—a] = V(ag:*)(az:*)(ar: (a1,a2) € [*] ).
(1.'1 oy, b OQ) S [[a — O[]]

26 / 41 Realizability and parametricity in pure type systems Marc Lasson



Parametricity in PTS's — Example

(t1, 1) € [V : x.a — ]

V(Oél Z*)(OQ : *)(aR : (al,az) € [[*]] )
(1.'1 oy, b 042) S [[a — a]]
(ar, ) ex] = a1 = ar— [¥]
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Parametricity in PTS's — Example

(t1, 1) € [V : x.a — ]

V(ag : *)(aa %) (ag 1 a1 — az — [*]).
(1.'1 oy, b OQ) S [[a — a]]
(Oél,ag) e [[*]] = 1 — Qp — [*—I
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Parametricity in PTS's — Example

(t1, 1) € [V : x.a — ]

V(o @ *)(az - %) (ar : a1 — ag — [%]).
(11, ) € [a — o]
(ar, ) €x] = a1 — ax — [¥]
(t1 a1, ) € [ao — @]
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Parametricity in PTS's — Example

V(ag : *)(aa %) (ag : a1 = az — [*]).
(t1a1, ) € [a — ]
(ar, ) €x] = a1 — ax — [¥]
(Lar,bag) €fla—a] = Y(x:a)(x:a).
(x1,x2) € [a] = (t1 a1 x1, t2 2 x2) € [

(t1, 1) € [V : x.a — ]
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Parametricity in PTS's — Example

(t1, ) € [Va:xa—a] = V(o :x)(o2:*)(ar:ar — ax — [*]).
(t1a1, ) € [a — ]
a1 — ap —> [*]
V(X a)(x ).
(x1,x2) € [a]] = (t1 a1 x1, tr 2 x2) € [
ar AB

(a1, 02) € [4]
(t]_ aq, b 042) c [[Oé — Oé]]

(A, B) € [a]
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Parametricity in PTS's — Example

(t1,0) € [Va:*xa—=a] = V(o :*)(a2:*)(arg: a1 — ax — [*]).
(t1a1, b ag) € [a — 4]
(a1, ) e*x] = a1 — ax — [¥]
(o, bag) €fla—a] = Y(xa:a)(x: ).

QR X1 X2 — QR (tl o1 X1) (fz (%) X2)
(A,B)ea] = arAB

26 / 41 Realizability and parametricity in pure type systems Marc Lasson



Parametricity in PTS's — Example

(t1,0) € [Va:*xa—=a] = V(o :*)(a2:*)(arg: a1 — ax — [*]).
(t1a1, b ag) € [a — 4]
(a1, an) €[*] = a1 — ar — []
(o, hag) €EJa—a] = V(x:a)(x:a).
agrx1xp = ag (tyag x1) (t az x2)
(A,B)ea] = arAB
Finally,

(t1, ) € [Va: o — o] =
V(g %)z *)(ar : a1 = ag — [x]).

V(x1:a1)(x :a2).arxi o = ag(ty o x1) (t az x2)
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Parametricity in PTS's

@ Here is the transformation for the product:

(Al,Az) S [[VX : BC]] =
V(x1: B)(x2 : B)(xg : (x1,%2) € [B]).(A1 x1, A2 x2) € [C]
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Parametricity in PTS's

@ Here is the transformation for the product:

(Al,Az) € [[VX : BC]] =
V(x1: B)(x2 : B)(xg : (x1,%2) € [B]).(A1 x1, A2 x2) € [C]

o If we have - (Ax : B.A) : (Vx : B.C), since we want to satisfy
the abstraction theorem, we must take

[M:B.A] = \x1: B)(x2: B)(xg : (x1,%2) € [B])-[A]
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Parametricity in PTS's

@ Here is the transformation for the product:

(Al,Az) € [[VX : BC]] =
V(x1: B)(x2 : B)(xg : (x1,%2) € [B]).(A1 x1, A2 x2) € [C]

o If we have - (Ax : B.A) : (Vx : B.C), since we want to satisfy
the abstraction theorem, we must take

[M:B.A] = \x1: B)(x2: B)(xg : (x1,%2) € [B])-[A]

e Symmetrically, we need to take [(AB)] = ([A] B B[B]).
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Parametricity in PTS's — The whole definition

Definition (parametricity)

(G, G) €[s]
(Cl, Cz) € [[VX T A B]]

(G, @) e[T]
[x]

[Ax : A.B]
[AB]

[T]
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Parametricity in PTS's — The whole definition

Definition (parametricity)

(G, G) €[s]
(Cl, C2) € [[VX T A B]]

G —G— |—S-|

V(xi: A)(x2 : A)(xr : (x1, x2) € [A]).
(Gix, Gx) € [B]

([T] Gi &) otherwise

(G, @) e [T]
[x]

[Ax : A.B]
[AB]

7]

Theorem (abstraction)
IfT=A:B:s, then [I']+ [A] : (A,A) € [B] : [s]
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Parametricity in PTS's — The whole definition

Definition (parametricity)

(G, G) €[s]
(Cl, C2) € [[VX T A B]]

G—-G— |—S-|

V(xi: A)(x2 : A)(xr : (x1, x2) € [A]).
(Gix, Gx) € [B]

([T] Gi &) otherwise

(G, &) e[T]

[ —

[Ax : A.B] = A A)(x: A)(xg : (x1,x) € [A]).[B]
[AB] — 4888

7] = Aoaxx: T).(x1,x2) € [T] otherwise

Theorem (abstraction)
IfT=A:B:s, then [I']+ [A] : (A,A) € [B] : [s]
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Parametricity in PTS’s — The n-ary version

Definition (parametricity)

C € [s]a = C—Js|

Cec[vx:AB], = Vx:AVxg:X€[Al,.Zx € [B]a
Ce[T]a = [T]a C otherwise

[x]n = R

[Ax: A.B]n = Ax: A Mg X € [Aln. [B]n
[AB], = [AL B8],

[T]n = Az: T.C € [T], otherwise

Theorem (abstraction)

IFTA:B:s, then [[nt [Aln: A€ [B]n: [s]
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Realizability in second-order logic

In traditional presentation of realizability:
o tlhFP - Q=Vx,xIFP = (tx)IFQ
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Realizability in second-order logic

In traditional presentation of realizability:
o tlhFP - Q=Vx,xIFP = (tx)IFQ
o tIFVx.P=Vx,tIFP
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Realizability in second-order logic

In traditional presentation of realizability:
o tlhFP - Q=Vx,xIFP = (tx)IFQ
o tIFVx.P=Vx,tlF P

There are two kinds of quantification:

o First-level quantification

@ Second-level quantification
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o tIFVx.P=Vx,tIFP

There are two kinds of quantification:

o First-level quantification

@ Second-level quantification
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Realizability in second-order logic

In traditional presentation of realizability:
o tlhFP - Q=Vx,xIFP = (tx)IFQ
o tIFVx.P=Vx,tIFP

There are two kinds of quantification:

@ First-level quantification : uniform,

@ Second-level quantification

30 / 41 Realizability and parametricity in pure type systems

Marc Lasson



Realizability in second-order logic

In traditional presentation of realizability:
0 tlFP = Q=Vx,xIFP = (tx)IFQ
o tIFVx.P=Vx,tlF P

There are two kinds of quantification:

o First-level quantification : uniform,

@ Second-level quantification
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Realizability in second-order logic

In traditional presentation of realizability:
0 tlFP = Q=Vx,xIFP = (tx)IFQ
o tIFVx.P=Vx,tIF P

There are two kinds of quantification:

o First-level quantification : uniform,

@ Second-level quantification : things happen.

30 / 41 Realizability and parametricity in pure type systems Marc Lasson



Pure Type Systems — A technical detail: sort annotations

@ We annotate variables with the sort of their type
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Pure Type Systems — A technical detail: sort annotations

@ We annotate variables with the sort of their type
@ Here is the product rule :
M-A:s Nx :AFB:s

b b R
[ (Vx :AB) :s3 (51,52, 55) €

ProbucT
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Pure Type Systems — A technical detail: sort annotations

@ We annotate variables with the sort of their type

@ Here is the product rule :

NFA:s x1:AFB:s
M= (Vx: AB) : s3

@ We can distinguish the two kinds of quantification:

o First-level quantification of the form Vx* : A.B,
o Second-level quantification of the form ¥x/*1 : A.B.

ProbDuUCT (s1,52,53) € R
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Realizability in PTS's

@ We define at the same time :

@ a binary notation - I -
e a unary notation ()

o We want to satisfy the adequacy theorem:

Theorem (adequacy)
IFT - A: B :[s], then

r = (A : |AlFB : [s]
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Realizability in PTS's — The products

o First level quantification :

ClFVx*: AB=Vx*:ACIFB
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Realizability in PTS's — The products
o First level quantification :
ClFVx*:AB=Vx*:ACIB
@ Second level quantification :

ClIFvxIsl - AB =V(|x]*: AN |x] IF A).(C|x]) IF B
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Realizability in PTS's — The products
o First level quantification :
ClFVx*:AB=Vx*:ACIB
@ Second level quantification :
ClIFvxIsl - AB =V(|x]*: AN |x] IF A).(C|x]) IF B

@ Sorts :
Clk[s]=C—]Js]
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Realizability in PTS's — The products
o First level quantification :
ClFVx*:AB=Vx*:ACIB
@ Second level quantification :
ClIFvxIsl - AB =V(|x]*: AN |x] IF A).(C|x]) IF B

@ Sorts :
Clk[s]=C—]Js]

In F2,
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Realizability in PTS's — The products
o First level quantification :
ClFVx*:AB=Vx*:ACIB
@ Second level quantification :
ClIFvxIsl - AB =V(|x]*: AN |x] IF A).(C|x]) IF B

@ Sorts :
Clk[s]=C—]Js]

In F2,
tIEVx: 7. P=Vx:7.tlF Q
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Realizability in PTS's — The products
o First level quantification :
ClFVx*:AB=Vx*:ACIB
@ Second level quantification :
ClIFvxIsl - AB =V(|x]*: AN |x] IF A).(C|x]) IF B

@ Sorts :
Clk[s]=C—]Js]

In F2,
tIEVx: 7. P=Vx:7.tlF Q
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Realizability in PTS's — The products
o First level quantification :
ClFVx*:AB=Vx*:ACIB
@ Second level quantification :
ClIFvxIsl - AB =V(|x]*: AN |x] IF A).(C|x]) IF B

@ Sorts :
Clk]s]=C—|s]

In F2,
tIEVx: 7. P=Vx:7.tlF Q

tIFP - Q=Vx:|P|xIFP—(tx)IFQ
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Realizability in PTS's — The products
o First level quantification :
ClFVx*:AB=Vx*:ACIB
@ Second level quantification :
ClIFvxIsl - AB =V(|x]*: AN |x] IF A).(C|x]) IF B

@ Sorts :
Clk]s]=C—|s]

In F2,
tIEVx: 7. P=Vx:7.tlF Q

tIFP - Q=Vx:|P|xIFP—(tx)IFQ
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Realizability in PTS's — The products
o First level quantification :
ClFVx*:AB=Vx*:ACIB
@ Second level quantification :
ClIFvxIsl - AB =V(|x]*: AN |x] IF A).(C|x]) IF B

@ Sorts :
Clk]s]=C—|s]

In F2,
tIEVx: 7. P=Vx:7.tlF Q

tIFP - Q=Vx:|P|xIFP—(tx)IFQ

tIEYX Ty == T — [%].P =
Va:x¥X:m — - =71 —a— [x|.(ta)lFP
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Realizability in PTS's — The whole definition
Definition (realizability)

Cl-[s] = C—|[s]

ClFYx*:AB = VYx*:ACIFB

ClkyxIs1:AB = V(|x)°: |A(X1: |x] IF A).(C |x])IF B
Cl-F = (F) C otherwise

Theorem (adequacy)
IfTEA:B:[s], then

(N F (A : |A] IF B : [s]
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Realizability in PTS's — The whole definition

34 /41

Definition (realizability)

(((A) LB])s (B))1s1
Az |T|.zIF T otherwise

Cl-[s] = C—|[s]

ClFYx*:AB = VYx*:ACIFB

ClkyxIs1:AB = V(|x)°: |A(X1: |x] IF A).(C |x])IF B
Cl-F = (F) C otherwise

(xTsT) = xIsl

(Ax* 1 A.B) = M*:A(B)

(AxIs1: A.B) = A|xJ*: AN 2 [ x] IF A).(B)
E(AB)S> i (<A> B)s

(T) =

Theorem (adequacy)
IfTEA:B:[s], then

(M F(A): |A]IF B : [s]
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From realizability to parametricity

Theorem (realizability increases arity of parametricity)

(B,C) € [Aln+1 = Bl (C € [Aln)
and
[Aln+1 = ([Aln)
Lemma (0-parametricity is lifting)

[Alo = [A]

We can define parametricity with lifting+realizability:

Corollary (From realizability to parametricity)

ze[Aln=alFz2 k- Ik z, Ik [A]
and

[Aln = (- (TA])---)
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A third level — From parametricity to realizability

¢

Theorem (From parametricity to realizability)

v—ﬂ

P

3

If A is a second-level term, then

zIFA=[[z] € [Al.]  and  (A) = [[Al]
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@ An application and an extension
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Representation theorems
If P=F or P= F, or P = calculus of construction,
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@ We can follow Krivine's methodology
@ Using second-order encoding:
o We can encode Leibniz equality - = -
e We use the induction principle N x to encode integer in proofs
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Representation theorems
If P=F or P= F, or P = calculus of construction,

@ We can follow Krivine's methodology
@ Using second-order encoding:
o We can encode Leibniz equality - = -
e We use the induction principle N x to encode integer in proofs

e N is a datatype :
Vrx,rlE Nx < (NxAr=na x)

38 /41 Realizability and parametricity in pure type systems Marc Lasson



Representation theorems
If P=F or P= F, or P = calculus of construction,

@ We can follow Krivine's methodology
@ Using second-order encoding:
o We can encode Leibniz equality - = -
e We use the induction principle N x to encode integer in proofs

e N is a datatype :
Vrx,rlE Nx < (NxAr=na x)
@ From any proof 7 of

Vx1...xp : Nat, Nx3 — -+ = Nxp = N(f x1...x5)
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Representation theorems
If P=F or P= F, or P = calculus of construction,

@ We can follow Krivine's methodology
@ Using second-order encoding:
o We can encode Leibniz equality - = -
e We use the induction principle N x to encode integer in proofs

e N is a datatype :
Vrx,rlE Nx < (NxAr=na x)

From any proof w of
Vx1...xp : Nat, Nx3 — -+ = Nxp = N(f x1...x5)

@ ... we obtain a program |7] such that [7| =nat f
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Representation theorems
If P=F or P= F, or P = calculus of construction,

@ We can follow Krivine's methodology
@ Using second-order encoding:
o We can encode Leibniz equality - = -
e We use the induction principle N x to encode integer in proofs

e N is a datatype :
Vrx,rlE Nx< (NxAr=nat X)

@ From any proof 7 of
Vx1...xp : Nat, Nx3 — -+ = Nxp = N(f x1...x5)
@ ... we obtain a program |7] such that [7| =nat f
o Conversely : if =p p: Nat — Nat we can find 7, such that

Fp2 mp 0 ¥x : Nat, Nx — N (px).
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Representation theorems
If P=F or P= F, or P = calculus of construction,

@ We can follow Krivine's methodology
@ Using second-order encoding:
o We can encode Leibniz equality - = -
e We use the induction principle N x to encode integer in proofs

e N is a datatype :
Vrx,rliE Nx < (NxAr=yat X)

@ From any proof 7w of
Vx1...xp : Nat, Nx3 — -+ = Nxp = N(f x1...x5)
@ ... we obtain a program |7] such that [7| =nat f
@ Conversely : if =p p: Nat — Nat we can find 7, such that

Fp2 mp 0 ¥x : Nat, Nx — N (px).

Arithmetic functions representable in P are
those provably total in P2.
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Inductive types

@ Encoding of conjunction:

data _A_: [s] — [s] — [s]| where
conj:MPQR:[s]|P—>Q—=PAQ
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Inductive types

@ Encoding of conjunction:

data _A_: [s] — [s] — [s]| where
conj:MPQR:[s]|P—>Q—=PAQ

@ Projection [A] = x:

data _ x _: s — s — s where
(,):Nap:sa—F—=axp
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data (A) : M(a - s).(a — [s]) —
n(3:s).(8 = [s]) —
a x 3 — s where
(conj) : M(a: s)(P:a— [s])
(B:s)(Q:B— [s])(x:a)(y:B).
Px—=Qy— (AN aPBQ(x,y)

By definition, t I P A Q means (A) [P] (P) | Q] (Q) t. We have
tIFPAQ e (mt)lF PA(mt)IFQ

where 71 and 7 are projections upon cartesian product.
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Conclusion

@ We gave a systematic way to formalize the meta-theory to
study a programming language

@ An account of parametricity and realizability in PTSs

@ We exposed links between the two

@ Extension: works with inductive types
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